

OCR (A) Chemistry A-level Topic 3.1.3 - The Halogens

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What group elements are referred to as halogens?

What group elements are referred to as halogens?

Group 7

List 2 properties of halogens

List 2 properties of halogens

- Low melting and boiling points
- Exist as diatomic molecules

What is the trend in boiling point down group 7? Why?

What is the trend in boiling point down group 7? Why?

Increases down the group because:

-size of atom increases as more occupied electron shells → stronger London forces of attraction between molecules, take more energy to break

What is the trend in reactivity down group 7? Why?

What is the trend in reactivity down group 7? Why?

Reactivity decreases because:

- Atomic radius increases
- Electron shielding increases
- Ability to gain an electron and form 1- ions decreases

What is the trend in oxidising ability down the group? Why?

What is the trend in oxidising ability down the group? Why?

Decreases down group (CI strongest, I weakest) This is because CI has the fewest occupied electron shells, greatest force of attraction between outer electrons and nucleus and thus is the easiest to gain electrons and be reduced → best oxidising agent

What is the trend in reducing ability of the halides down the group? Why?

What is the trend in reducing ability of the halides down the group? Why?

Increases down the group (Cl⁻ weakest, l⁻ strongest) This is because I has the most occupied electron shell so outer electrons are further from the nucleus, weakest force of attraction between outer electrons and positive charge of nucleus and thus is the easiest to be oxidised and lose electrons → best reducing agent

When a more reactive halogen displaces a less reactive halide, what is the reaction called?

When a more reactive halogen displaces a less reactive halide, what is the reaction called?

Displacement reaction

What is the colour of chlorine in water?

What is the colour of chlorine in water?

Pale green

What is the colour of bromine in water?

What is the colour of bromine in water?

Orange

What is the colour of iodine in water?

What is the colour of iodine in water?

Brown

What is the colour of chlorine in cyclohexane?

What is the colour of chlorine in cyclohexane?

Pale green

What is the colour of bromine in cyclohexane?

What is the colour of bromine in cyclohexane?

Orange

What is the colour of iodine in cyclohexane?

What is the colour of iodine in cyclohexane?

Violet

Out of the 3 halides Cl⁻, Br⁻ & I⁻, which one of these can be oxidised by chlorine?

Out of the 3 halides Cl⁻, Br⁻ & l⁻, which one of these can be oxidised by chlorine?

Br & I ions

Write the equation for chlorine oxidising bromide ions

Write the equation for chlorine oxidising bromide ions

$$Cl_2$$
 (aq) + 2Br- (aq) \rightarrow 2Cl- (aq) + Br₂ (aq)

Write the equation for Cl₂ oxidising 2I-

Write the equation for Cl₂ oxidising 2I-

$$Cl_2$$
 (aq) + 2I- (aq) \rightarrow 2CI- (aq) + I₂ (aq)

Out of the 3 halides Cl⁻, Br⁻ & I⁻, which one of these can be oxidised by bromine?

Out of the 3 halides CI-, Br- & I-, which one of these can be oxidised by bromine?

I⁻ions

Write the equation for bromine oxidising iodide ions

Write the equation for bromine oxidising iodide ions

$$Br_2(aq) + 2I-(aq) \rightarrow 2Br-(aq) + I_2(aq)$$

Out of the 3 halides Cl-, Br-& I-, which one of these can be oxidised by iodine?

Out of the 3 halides CI-, Br- & I-, which one of these can be oxidised by iodine?

Does not oxidise Cl⁻ or Br⁻

Define disproportionation

Define disproportionation

The oxidation and reduction of the same element in a redox reaction

What is the equation for the reaction of Cl₂ with water?

What is the equation for the reaction of Cl₂ with water?

$$Cl_2(g) + H_2O(I) \rightarrow HCIO(aq) + HCI(aq)$$

What type of reaction is the reaction of chlorine with water?

What type of reaction is the reaction of chlorine with water?

Disproportionation; chlorine is both oxidised and reduced

Why is chlorine added to drinking water?

Why is chlorine added to drinking water?

It kills the bacteria in the water and makes it safer to drink

What are the two forms of the chlorate ion?

What are the two forms of the chlorate ion?

CIO- is chlorate (I)

ClO₃- is chlorate (V)

What is the equation for forming bleach?

What is the equation for forming bleach?

$$Cl_2$$
 (aq) + 2NaOH (aq) \rightarrow NaCl (aq) + NaClO (aq) + H₂O (l)

NaClO is bleach

